Items tagged with "quantum computing"
Quantum Computers Are Starting to Simulate the World of Subatomic Particles
There is a heated race to make quantum computers deliver practical results. But this race isn't just about making better technology—usually defined in terms of having fewer errors and more qubits, which are the basic building blocks that store quantum information. At least for now, the quantum computing race requires grappling with the complex realities of both quantum technologies and difficult problems.
Tug-of-War Unlocks Menagerie of Quantum Phases of Matter
Phases are integral to how we define our world. We navigate through the phases of our lives, from child to teenager to adult, chaperoned along the way by our changing traits and behaviors. Nature, too, undergoes phase changes. Lakes can freeze for the winter, thaw in the spring and lose water to evaporation in the dog days of summer. It’s useful to capture and study the differences that accompany these dramatic shifts.
Foundational Step Shows Quantum Computers Can Be Better Than the Sum of Their Parts
Pobody’s nerfect—not even the indifferent, calculating bits that are the foundation of computers. But JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an assembly of quantum computing pieces can be better than the worst parts used to make it.
Researchers Uncover a ‘Shortcut’ to Thermodynamic Calculations Using Quantum Computers
A collaboration between researchers at JQI and North Carolina State University has developed a new method that uses a quantum computer to measure the thermodynamic properties of a system. The team shared the new approach in a paper published August 18, 2021, in the journal Science Advances.
New Approach to Information Transfer Reaches Quantum Speed Limit
Even though quantum computers are a young technology and aren’t yet ready for routine practical use, researchers have already been investigating the theoretical constraints that will bound quantum technologies. One of the things researchers have discovered is that there are limits to how quickly quantum information can race across any quantum device.
Proposal Shows How Noisy Qubits Might Correct Themselves
One of the chief obstacles facing quantum computer designers—correcting the errors that creep into a processor’s calculations—could be overcome with a new approach proposed by physicists from JQI and the California Institute of Technology. The team, who are all affiliated with the National Institute of Standards and Technology, may have found a way to design quantum memory switches that will self-correct.
New $115 Million Quantum Systems Accelerator to Pioneer Quantum Technologies for Discovery Science
The Department of Energy (DOE) has awarded $115 million over five years to the Quantum Systems Accelerator (QSA), a new research center led by Lawrence Berkeley National Laboratory (Berkeley Lab) that will forge the technological solutions needed to harness quantum information science for discoveries that benefit the world. It will also energize the nation’s research community to ensure U.S. leadership in quantum R&D and accelerate the transfer of quantum technologies from the lab to the marketplace. Sandia National Laboratories is the lead partner of the center.
Quantum Computers Do the (Instantaneous) Twist
Regardless of what makes up the innards of a quantum computer, its speedy calculations all boil down to sequences of simple instructions applied to qubits—the basic units of information inside a quantum computer.
Manucharyan Receives Second Consecutive Google Faculty Research Award
JQI Fellow Vladimir Manucharyan has received a 2019 Google Faculty Research Award. It is the second consecutive year that Manucharyan, who is also an Associate Professor of Physics at UMD, has earned the honor.
This year’s award will continue to support research by Manucharyan and his team into quantum computing hardware based on superconducting circuits. They are pursuing the development of special quantum bits—called fluxonium qubits—for use in a new generation of computers.
JQI Researchers Receive Quantum Award from Google
JQI Fellow Mohammad Hafezi and JQI Graduate Researchers Alireza Seif and Hwanmun Kim have received an award from Google to support research identifying and developing problems that simple quantum computers might help solve. The work could bridge the divide between demonstrating quantum supremacy, as Google claimed to do in October, and building practical quantum computers that can run established algorithms.