@article {liang_coherence_2021,
title = {Coherence and decoherence in the {Harper}-{Hofstadter} model},
journal = {Phys. Rev. Res.},
volume = {3},
number = {2},
year = {2021},
note = {Place: ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA Publisher: AMER PHYSICAL SOC Type: Article},
month = {apr},
abstract = {We quantum simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry-three sites in circumference-using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux Phi(L) down the axis of the tube. This geometry evokes an Aharonov-Bohm interferometer, where noise in Phi(L) would readily decohere the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux is a rational fraction of the flux quantum and remarkably find that for irrational fractions the decoherence is absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations by transforming the HH model into a collection of momentum-space Aubry-Andre models.},
doi = {10.1103/PhysRevResearch.3.023058},
author = {Liang, Q-Y and Trypogeorgos, D. and Valdes-Curiel, A. and Tao, J. and Zhao, M. and Spielman, I. B.}
}
@article {anderson_realization_2020,
title = {Realization of a deeply subwavelength adiabatic optical lattice},
journal = {Phys. Rev. Res.},
volume = {2},
number = {1},
year = {2020},
note = {Place: ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA Publisher: AMER PHYSICAL SOC Type: Article},
month = {feb},
abstract = {We propose and describe our realization of a deeply subwavelength optical lattice for ultracold neutral atoms using N resonantly Raman-coupled internal degrees of freedom. Although counterpropagating lasers with wavelength. provided two-photon Raman coupling, the resultant lattice period was lambda/2N, an N-fold reduction as compared to the conventional lambda/2 lattice period. We experimentally demonstrated this lattice built from the three F = 1 Zeeman states of a Rb-87 Bose-Einstein condensate, and generated a lattice with a lambda/6 = 132 nm period from lambda = 790 nm lasers. Lastly, we show that adding an additional rf-coupling field converts this lattice into a superlattice with N wells uniformly spaced within the original lambda/2 unit cell.},
doi = {10.1103/PhysRevResearch.2.013149},
author = {Anderson, R. P. and Trypogeorgos, D. and Valdes-Curiel, A. and Liang, Q-Y and Tao, J. and Zhao, M. and Andrijauskas, T. and Juzeliunas, G. and Spielman, I. B.}
}