@article { ISI:000452316100001,
title = {Spin decoherence in a two-qubit CPHASE gate: the critical role of tunneling noise},
journal = {NPJ QUANTUM INFORMATION},
volume = {4},
year = {2018},
month = {NOV 27},
pages = {62},
abstract = {Rapid progress in semiconductor spin qubits has enabled experimental demonstrations of a two-qubit logic gate. Understanding spin decoherence in a two-qubit logic gate is necessary for optimal qubit operation. We study spin decoherence due to 1/f charge noise for two electrons in a double quantum dot used for a two-qubit controlled-phase gate. In contrast to the usual belief, spin decoherence can be dominated by the tunneling noise from 1/f charge noise instead of the detuning noise. Tunneling noise can dominate because the effect of tunneling noise on the spin qubit is first order in the charge admixture; while the effect of the detuning noise is only second order. The different orders of contributions result in different detuning dependence of the decoherence, which provides a way to identify the noise source. We find that decoherence in a recent two-qubit experiment was dominated by the tunneling noise from 1/f charge noise. The results illustrate the importance of considering tunneling noise to design optimal operation of spin qubits.},
issn = {2056-6387},
doi = {10.1038/s41534-018-0112-0},
author = {Huang, Peihao and Zimmerman, Neil M. and Bryant, Garnett W.}
}