@article { ISI:000452324400004,
title = {Chiral supercurrent through a quantum Hall weak link},
journal = {PHYSICAL REVIEW B},
volume = {98},
number = {21},
year = {2018},
month = {DEC 6},
pages = {214504},
abstract = {We use an effective model to calculate properties of the supercurrent carried by chiral edge states of a quantum Hall weak link. This {\textquoteleft}{\textquoteleft}chiral{{\textquoteright}{\textquoteright}} supercurrent is qualitatively distinct from the usual Josephson supercurrent in that it cannot be mediated by a single edge alone, i.e., both right- and left-going edges are needed. Moreover, the chiral supercurrent was previously shown to obey an unusual current-phase relation with period 2 phi(0) = h/e, which is twice the period of conventional Josephson junctions. We show that the {\textquoteleft}{\textquoteleft}chiral{{\textquoteright}{\textquoteright}} nature of this supercurrent is sharply defined, and is robust to interactions to infinite order in perturbation theory. We compare our results with recent experimental findings {[}Amet et al., Science 352 966 (2016)] and find that quantitative agreement in the magnitude of the supercurrent can be attained by making reasonable but critical assumptions about the superconductor quantum Hall interface.},
issn = {2469-9950},
doi = {10.1103/PhysRevB.98.214504},
author = {Alavirad, Yahya and Lee, Junhyun and Lin, Ze-Xun and Sau, Jay D.}
}