RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Relatively Certain

Hear the latest news about everything from quantum computers to astrophysics, all straight from scientists at the University of Maryland. Relatively Certain is produced by the Joint Quantum Institute and hosted by a rotating cast, featuring Chris Cesare, Emily Edwards and Dina Genkina. Episodes from Quantum Conversations, a prior series focused entirely on quantum physics, will remain available under the new name.

Photo of a diamond chip NV experiment

We all know that diamonds can hold great sentimental (and monetary) value. As luck may have it, diamonds—particularly defective ones, with little errors in their crystal structure—also hold great scientific value.

An artist's depiction of an atom sitting on a representation of a warped spacetime

Gravity is a fixture of our everyday lives, particularly apparent when we drop a piece of toast on the kitchen floor or trip over an unseen step. Not surprisingly, physicists have studied gravity heavily over the centuries.

An artists's rendering of an atom with galaxies embedded inside

There’s a big unsolved mystery in physics: The cosmic balance sheet for matter in our universe just doesn’t add up. Galaxies all over space move as though they are much heavier than they appear.

Topology—the mathematical study of shapes that describes how a donut differs from a donut hole—has turned out to be remarkably relevant to understanding our physical world.

Software just might be the unsung hero of physics labs.

In many situations, chaos makes it nearly impossible to predict what will happen next. Nowhere is this more apparent than in weather forecasts, which are notorious for their unreliability.

Chaos. Time travel. Quantum entanglement. Each may play a role in figuring out whether black holes are the universe’s ultimate information scramblers.

What's it like living and working in Antarctica? Upon returning from a five-week trip to the Amundsen-Scott South Pole Station, UMD graduate student Liz Friedman sat down with Chris and Emily to chat about her experience.

Deep within the ice covering the South Pole, thousands of sensitive cameras strain their digital eyes in search of a faint blue glow—light that betrays the presence of high-energy neutrinos.

Trey Porto, a NIST physicist and Fellow of the Joint Quantum Institute, spends his days using atoms and lasers to study quantum physics. But even outside

A little more than a hundred years ago, Albert Einstein worked out a consequence of his new theory of gravity: Much like waves traveling through water, ripples can undulate through space and time, distorting the fabric of the universe itself.