Skip to main content

Robust optical delay lines with topological protection

Abstract

Phenomena associated with the topological properties of physical systems can be naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to improve photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that topological protection can be used to improve the performance of optical delay lines and to overcome some limitations related to disorder in photonic technologies.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2011
Journal
Nature Physics
Volume
7
Pagination
907-912

Download the Publication

Contributors

Groups