Skip to main content

Optical imprinting of superlattices in two-dimensional materials

Abstract

We propose an optical method of shining circularly polarized and spatially periodic laser fields to imprint superlattice structures in two-dimensional electronic systems. By changing the configuration of the optical field, we synthesize various lattice structures with different spatial symmetry, periodicity, and strength. We find that the wide optical tunability allows one to tune different properties of the effective band structure, including Chern number, energy bandwidths, and band gaps. The in situ tunability of the superlattice gives rise to unique physics ranging from the topological transitions to the creation of the flat bands through the kagome superlattice, which can allow a realization of strongly correlated phenomena in Floquet systems. We consider the high-frequency regime where the electronic system can remain in the quasiequilibrium phase for an extended amount of time. The spatiotemporal reconfigurability of the present scheme opens up possibilities to control light-matter interaction to generate novel electronic states and optoelectronic devices.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2020
Journal
Physical Review Research
Volume
2

Download the Publication