Skip to main content

Atomic interface between microwave and optical photons

Abstract

A complete physical approach to quantum information requires a robust interface among flying qubits, long-lifetime memory, and computational qubits. Here we present a unified interface for microwave and optical photons, potentially connecting engineerable quantum devices such as superconducting qubits at long distances through optical photons. Our approach uses an ultracold ensemble of atoms for two purposes: quantum memory and to transduce excitations between the two frequency domains. Using coherent control techniques, we examine an approach for converting and storing quantum information between microwave photons in superconducting resonators, ensembles of ultracold atoms, and optical photons, as well as a method for transferring information between two resonators.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2012
Journal
Physical Review A
Volume
85

Download the Publication

Contributors

Groups