RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Experimental Atomic Spectroscopy of Iron Group Elements for Astrophysics

November 5, 2021 - 3:00pm
Speaker: 
Jacob Ward

Dissertation Committee Chair: Steve Rolston

Committee: 

Gillian Nave

Trey Porto

Ronald Walsworth

Wendell Hill

Abstract: The quality of modern astrophysical spectra has made it clear that there is a lack of sufficiently accurate and robust laboratory atomic reference data sets. Particularly for spectra of the iron-group elements, the growing demand for critically evaluated sets of comprehensive atomic data is a direct result of advancing stellar astrophysics models and fundamental physics problems probing beyond the standard model. My thesis reports on my critical evaluation of the Ni V spectrum and the recent laboratory measurements I have conducted to improve the state of available reference data for astrophysical applications that rely on observations of Ni V. Additionally, I report my laboratory measurements of Fe II branching fraction values in the UV/VUV.

Using high-resolution grating spectroscopy at the National Institute of Standards and Technology, I carried out an analysis of quadruply ionized iron and nickel (Fe V & Ni V) in the vacuum ultraviolet (VUV) region by both recording new spectra and critically evaluating previously published data sets. My analysis resulted in highly accurate wavelengths, presented with calculated oscillator strengths, for roughly 1500 Ni V lines, 200 of which have uncertainties that are almost an order of magnitude lower than in previous publications. Additionally, I present over 300 Ni V energy levels derived from my evaluated wavelengths. My work also strongly supports the previous evaluations of Fe V by another author. With the extreme accuracy requirements of modern astrophysics problems, confirming the wavelength scale and uncertainty evaluation of previous Fe V data sets is still significant.

Additionally my thesis also presents measurements of singly ionized iron (Fe II) branching fractions (BFs) in the VUV using high-resolution Fourier-transform spectroscopy. BFs are essential values for interpreting complex astrophysical spectra, but are notoriously difficult to measure in the VUV; for this reason, VUV BFs of Fe II have only been reported by one other research group for just seven levels. My thesis reports accurate BFs for 10 Fe II levels, involving approximately 150 spectral lines, which roughly doubles the amount of reported Fe IIBFs in UV/VUV.

PSC 2204