RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Items tagged with "quantum simulation"

August 2, 2017

Simulating the quantum world with electron traps

This story was prepared by the Delft University of Technology (TU Delft) and adapted with permission. The experiments described were performed at TU Delft, with theoretical and numerical contributions from JQI Fellow and Condensed Matter Theory Center Director Sankar Das Sarma and JQI postdoctoral researcher Xiao Li.

August 28, 2014

Sprinkling Spin Physics onto a Superconductor

JQI Fellow Jay Sau, in collaboration with physicists from Harvard and Yale, has been studying the effects of embedding magnetic spins onto the surface of a superconductor. They recently report that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

August 21, 2014

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

July 31, 2014

Spin Diagnostics

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.

July 9, 2014

Spin-dependent forces, magnetism and ion traps

Ions are charged particles that interact strongly via the Coulomb force, which is an attraction/repulsion that decreases as particles separate. When a handful of positively charged ions are thrown together, they repel each other, and, for an oblong ion trap, form a linear crystal. (Images of ion traps can be found in media galleries.) Each ion has two internal energy states that make up a qubit. Laser beams can manipulate the Coulomb force to create tunable, long range magnetic-like interactions, where each ion qubit represents a tiny magnet.

July 9, 2014

Making Quantum Connections

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is at the heart of what distinguishes purely quantum systems from classical ones; it is why they are potentially useful, but it sometimes makes them very difficult to understand.

May 10, 2013

Rajibul Islam awarded Distinguished Dissertation Award

Rajibul Islam was recently awarded UMDs Distinguished Dissertation Award for his thesis work on quantum magnetism with ions in Chris Monroe's Trapped Ion Quantum Information group.

May 2, 2013

Turning on Frustration

This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.

Optical ring resonator, K. Srinivasan, JQI
March 21, 2012

A One-way Street for Light

Researchers propose using ring resonators to construct a micro-optical diode that can be used for quantum information.

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to