RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

PFC All News

The quantum Hall effect, discovered in the early 1980s, is a phenomenon that was observed in a two-dimensional gas of electrons existing at the interface between two semiconductor layers. Subject to the severe criteria of very high material purity and very low temperatures, the electrons, when under the influence of a large magnetic field, will organize themselves into an ensemble state...

From NIST TechBeat--It’s not lightsaber time, not yet. But a team including theoretical physicists from JQI and NIST has taken another step toward building objects out of photons, and the findings, recently published in Physical Review Letters, hint that weightless particles of light can be joined into a sort of “molecule” with its own peculiar force. Researchers show...

Experimental quantum physics often resides in the coldest regimes found in the universe, where the lack of large thermal disturbances allows quantum effects to flourish. A key ingredient to these experiments is being able to measure just how cold the system of interest is. Laboratories that produce ultracold gas clouds have a simple and reliable method to do this: take pictures! The...

In quantum mechanics, symmetry describes more than just the patterns that matter takes — it is used to classify the nature of quantum states. These states can be entangled, exhibiting peculiar connections that cannot be explained without the use of quantum physics. For some entangled states, the symmetry of these connections can offer a kind of protection against disruptions. Physicists are...

JQI Fellow and NIST Scientist Gretchen Campbell has recently been announced as the IUPAP 2015 Young Scientist Prize recipient in the field of Atomic, Molecular, and Optical Physics. The organization cited her "outstanding contributions in toroidal Bose-Einstein condensates and its application to "atomtronic" circuits." 

The International...

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits.  One of the obstacles to this goal is the difficulty of preserving the fragile quantum condition of qubits against unwanted outside influence even as the qubits interact among themselves in a programmatic way. 

Spin qubits are one of the most...

Optical fibers are hair-like threads of glass used to guide light. Fibers of exceptional purity have proved an excellent way of sending information over long distances and are the foundation of modern telecommunication systems. JQI researchers in collaboration with scientists from the Naval Research Laboratory have developed a new technique for visualizing light propagation through an optical...

If you’re designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but JQI physicists have narrowed the theoretical limits for where that “speed limit” is. The work implies that quantum processors will work more slowly than some research has suggested. 
The work offers a better...

The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) of the illumination  quite small and by moving it quite close to the object being imaged.   One problem with this approach is that in such proximity, the emitter and...

The OSA announced JQI Fellow and NIST scientist Paul Julienne as the 2015 William F. Meggers Award recipient. The William F. Meggers Award recognizes outstanding work in spectroscopy. According to the citation, Julienne is being recognized for "seminal contributions to precision photoassociation and magnetic-Feshbach spectroscopy of...

JQI researchers, under the direction of Christopher Monroe have demonstrated modular entanglement between two atomic systems, separated by one meter. Here, photons are the long distance information carriers entangling multiple qubit modules. Inside of a single module, quantized collective vibrations called phonons connect individual qubits. In the latest result, one module contains two qubits...

Strongly correlated electronic systems, like superconductors, display remarkable electronic and magnetic properties, and are of considerable research interest. These systems are fermionic, meaning they are composed of a class of particle called a fermion. Bosonic systems, composed another family of particles called bosons, offer a level of control often not possible in solid state systems....

JQI Fellow and Assistant Professor of physics Vladimir Manucharyan has received a National Science Foundation CAREER Award. His proposal, entitled “Realizing the ultrastrong coupling regime of quantum electrodynamics using high-impedance Josephson superconducting circuits,” will receive five years of funding. NSF funds research in...

Alan Migdall and Elohim Becerra and their colleagues at the Joint Quantum Institute have devised an optical detection scheme with an error rate 25 times lower than the fundamental limit of the best conventional detector. They did this by employing not passive detection of incoming light pulses. Instead the light is split up and measured numerous times.

boson spin-hall thumb

Every electrical device is enabled by the movement of charge, or current. ‘Spintronics’ taps into a different electronic attribute, an intrinsic quantum property known as spin, and may yield devices that operate on the basis of spin-transport. JQI/CMTC theorists have been developing a model for what happens when spins are trapped in an optical lattice structure with a “double-valley” feature....

Interfering Waves

A new extreme for sub-wavelength interference has been achieved by JQI scientists using thermal light and small-photon-number light detection. Achieving this kind of sharp interference pattern could be valuable for performing a variety of high-precision physics and astronomy measurements.

JQI scientists have added an important technique to the atomtronics arsenal, a method for analyzing a superfluid circuit component called a ‘weak link’. The result, detailed in the online journal Physical Review X, is the first direct measurement of the current-phase relationship of a weak link in a cold atom system.

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.

In quantum mechanics, interactions between particles can give rise to entanglement, which is a strange type of connection that could never be described by a non-quantum, classical theory. These connections, called quantum correlations, are present in entangled systems even if the objects are not physically linked (with wires, for example). Entanglement is...

Pages

PFC General Info: pfc-info@umd.edu   Academic and Research Info: Luis Orozco | Atlantic Building 2203 | (301) 405-9740 | lorozco@umd.edu