RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

A Plan for Hybrid Entanglement

Quantum entanglement, a condition in which the states of two different objects become so inextricably linked that neither can be described separately, is an essential element of any future quantum computer. Scientists have succeeded in entangling many sorts of entities, typically identical atom or photon systems. But it has never been accomplished between an atomic system and a solid-state system such as a quantum dot in a semiconductor microcavity.

Now two researchers have devised an experiment in which the quantum state of a single trapped atom will be entangled with that of a quantum dot through the intervention of a laser beam that serves as an interface between the two. This is a difficult challenge, because each object radiates light of substantially different characteristics.

Such a hybrid entanglement would be able to exploit the particular advantages of each component: Atoms can sustain delicate quantum states for a very long time, whereas quantum dots can interact rapidly and strongly with light.

Edo Waks and Christopher Monroe
Reference Publication
Available Downloads

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to