RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Physics Frontier Center News

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's cat in the lab by smearing the microscopic quantum world over longer and longer distances.


Such "cat states" have found many homes, promising more sensitive quantum measurements and acting as the basis for quantum error-correcting codes—a necessary component for...

Peter Kordell, a UMD undergrad, was awarded the IPST Monroe Martin Prize for Undergraduate Research in Physics.

The photodetectors in Alan Migdall’s lab often see no light at all, and that’s a good thing since he and his JQI (*) colleagues perform physics experiments that require very little light, the better to study subtle quantum effects. Their latest achievement, described here, is to develop a new way of counting photons to understand the sources and modes of light in modern physics experiments....

Unfortunately, qubits are fragile; they dissipate in the face of interactions with their environment. A new JQI semiconductor-based qubit design ably addresses this issue of qubit robustness.

JQI researchers in the lab of Alan Migdall, demonstrate how one category of photo-detection system can make highly accurate readings of incoming information at the single-photon level by allowing the detector in some instances not to give a conclusive answer.

JQI Researchers have reported* the first observation of the "spin Hall effect" in a Bose-Einstein condensate.This is a step toward applications in "atomtronics"—the use of ultracold atoms as circuit components.

JQI researchers under the direction of Chris Monroe have produced quantum entanglement between a single atom’s motion and its spin state thousands of times faster than previously reported, demonstrating unprecedented control of atomic motion.

Rajibul Islam was recently awarded UMDs Distinguished Dissertation Award for his thesis work on quantum magnetism with ions in Chris Monroe's Trapped Ion Quantum Information group.

This week’s issue of Science Magazine features new results from the research group of Christopher Monroe at the JQI, where they explored how to frustrate a quantum magnet comprised of sixteen atomic ions – to date the largest ensemble of qubits to perform a simulation of quantum matter.

All computers, even the future quantum versions, use logic operations or “gates,” which are the fundamental building blocks of computational processes. JQI scientists, led by Professor Edo Waks, have performed an ultrafast logic gate on a photon, using a semiconductor quantum dot.

Recently Science Magazine invited JQI fellow Chris Monroe and Duke Professor Jungsang Kim to speculate on ion trap technology as a scalable option for quantum information processing. The article is highlighted on the cover of this week’s (March 8, 2013) issue, which is dedicated to quantum information. The cover portrays a photograph of a surface trap that was fabricated by...

Pages