RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

News

March 27, 2008 | Research News

Controlling Decoherence

To scientists seeking a basis for future quantum information processing, there is no more urgent or vexing problem than delaying the onset of “decoherence” – the collapse of delicate, but essential, quantum states.

The ability to store and manipulate information of any kind requires a dependable medium with which to record data and perform operations. In a conventional computer, where ...

Lyman alpha photons
March 26, 2008 | Research News

Neutron Detection by Light: A 100-fold Improvement

JQI researchers have developed a new optical method to detect individual neutrons and record them over a range of intensities at least a hundred times greater than existing detectors.

JQI's Roman Lutchyn, Pavel Nagornykh, and Benjamin Lee
March 24, 2008 | People News

JQI Culture: Synergies and Opportunities

JQI’s distinctive commitment to integrating research and education courages multiple collaborations and flexible interactions among faculty, postdocs and students.

Sub-femtosecond precision, NIST
March 20, 2008 | Research News

Sub-Femtosecond Stop Watch For 'Photon Finish' Races

Using a system that can compare the travel times of two photons with sub-femtosecond precision, scientists at the Joint Quantum Institute (a partnership of the National Institute of Standards and Technology (NIST) and the University of Maryland) and Georgetown University have found a remarkably large difference in the time it takes photons to pass through nearly identical stacks of materials with different arrangements of refractive layers.

Proton and Triton
March 10, 2008 | Research News

New Detector Can ‘See’ Single Neutrons Over Broad Range

Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a new optical method that can detect individual neutrons and record them over a range of intensities at least a hundred times greater than existing detectors. The new detector, described at the March Meeting of the American Physical Society* by Charles Clark, a ...

Ultracold atoms, NIST
March 10, 2008 | Research News

Stunt Doubles: Ultracold Atoms Could Replicate the Electron ‘Jitterbug’

Ultracold atoms moving through a carefully designed arrangement of laser beams will jiggle slightly as they go, two NIST scientists have predicted. If observed, this never-before-seen “jitterbug” motion would shed light on a little-known oddity of quantum mechanics arising from Paul Dirac’s 80-year-old theory of the electron.

March 5, 2008 | Research News

’Loopy’ Photons Test Hidden-Variable Predictions

JQI researchers have devised a new method for creating pairs of entangled photons to test key postulates of quantum mechanics.

Persistent Flow in a Gas
December 14, 2007 | Research News

NIST Announces First Observation of ‘Persistent Flow' in a Gas

Using laser light to stir an ultracold gas of atoms, researchers at the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (NIST/University of Maryland) have demonstrated the first “persistent” current in an ultracold atomic gas —a frictionless flow of particles.

Diagram of experimental apparatus. Credit: C. Monroe/UMD
September 7, 2007 | Research News

First Entanglement of Two Separate Ions a Meter Apart: Photons Go the Distance

A team of physicists has exploited one of the most mysterious phenomena in nature to make a major advance toward the long-sought goal of super-fast quantum computing.

Thousands of pairs of rubidium atoms. Credit: T. Porto, NIST
July 25, 2007 | Research News

Thousands of Atoms Swap ‘Spins' with Partners in Quantum Square Dance

Physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have induced thousands of atoms trapped by laser beams to swap “spins” with partners simultaneously.

Pages

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu