RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

November 14, 2014 | PFC | Research News

Best Quantum Receiver

Alan Migdall and Elohim Becerra and their colleagues at the Joint Quantum Institute have devised an optical detection scheme with an error rate 25 times lower than the fundamental limit of the best conventional detector. They did this by employing not passive detection of incoming light pulses. Instead the light is split up and measured numerous times.

boson spin-hall thumb
October 20, 2014 | PFC | Research News

Restoring Order

Every electrical device is enabled by the movement of charge, or current. ‘Spintronics’ taps into a different electronic attribute, an intrinsic quantum property known as spin, and may yield devices that operate on the basis of spin-transport. JQI/CMTC theorists have been developing a model for what happens when spins are trapped in an optical lattice structure with a “double-valley” feature. This new result opens up a novel path for generating what’s known as the spin Hall effect, an important example of spin-transport.

Interfering Waves
October 10, 2014 | PFC | Research News

Getting sharp images from dull detectors

A new extreme for sub-wavelength interference has been achieved by JQI scientists using thermal light and small-photon-number light detection. Achieving this kind of sharp interference pattern could be valuable for performing a variety of high-precision physics and astronomy measurements.

October 8, 2014 | PFC | Research News

A cold-atom ammeter

JQI scientists have added an important technique to the atomtronics arsenal, a method for analyzing a superfluid circuit component called a ‘weak link’. The result, detailed in the online journal Physical Review X, is the first direct measurement of the current-phase relationship of a weak link in a cold atom system.

October 2, 2014 | Research News

Quantum Environmentalism

A qubit exists in a superposition of two or more possible states, but this superposition is a fragile condition, in danger of being undone through interaction with the environment. A new paper addresses this problem by demonstrating a new type of qubit control, one that actually makes productive use of a qubit’s proximity to its surroundings.

Quantum point contact
September 18, 2014 | Research News

Two-dimensional electron liquids

A relatively new frontier for studying 2D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors.

September 2, 2014 | Research News

Cool Calculations for Cold Atoms

Two scientists at the Joint Quantum Institute have formulated a universal theory to describe the properties of Efimov states, a theory that, for the first time, does not need extra adjustable unknown parameters . This should allow physicists to predict the rates of chemical processes involving three atoms -- or even more -- using only a knowledge of the interaction forces at work.

August 28, 2014 | Research News

Sprinkling Spin Physics onto a Superconductor

JQI Fellow Jay Sau, in collaboration with physicists from Harvard and Yale, has been studying the effects of embedding magnetic spins onto the surface of a superconductor. They recently report that the spins can interact differently than previously thought. This hybrid platform could be useful for quantum simulations of complex spin systems, having the special feature that the interactions may be controllable, something quite unusual for most condensed matter systems.

August 21, 2014 | PFC | Research News

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

July 31, 2014 | PFC | Research News

Spin Diagnostics

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.


Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to