RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon


January 6, 2016 | PFC | Research News

Beating the heat

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed ...

January 6, 2016 | People News

$31M Grant Targets Quantum Computing’s Error Control Challenge

A team of researchers led by Duke University and the University of Maryland has been tapped by the nation’s “Q Branch” to take quantum computing efforts to the next level using one of the field’s leading technologies—ion traps.

The Intelligence Advanced Research Projects Activity (IARPA) invests in high-risk, high-payoff research programs to tackle some of the most difficult challenges in ...

December 17, 2015 | PFC | Research News

Controlling the Thermodynamics of Light

The concept of temperature is critical in describing many physical phenomena, such as the transition from one phase of matter to another.  Turn the temperature knob and interesting things can happen.  But other knobs might be just as important for studying some phenomena.  One such knob is chemical potential, a thermodynamic parameter first introduced in the nineteenth century by scientists ...

December 3, 2015 | PFC | Research News

Shaking Bosons into Fermions

Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic anti-social behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made ...

November 25, 2015 | PFC | Research News

Quantum Insulation

Two physical phenomena, localization and ergodicity-breaking, are conjoined in new experimental and theoretical work.  Before we consider possible implications for fundamental physics and for prospective quantum computing, let’s first look at these two topics in turn.  It will bear providing some specific examples before getting to the quantum details.


When electrons pass through a material they encounter various degrees ...

November 11, 2015 | Research News

Frigid Ytterbium

For many years rubidium has been a workhorse in the investigation of ultracold atoms.  Now JQI scientists are using Rb to cool another species, ytterbium, an element prized for its possible use in advanced optical clocks and in studying basic quantum phenomena.   Yb shows itself useful in another way: it comes in numerous available isotopes, some of which are bosonic ...

November 4, 2015 | Research News

Photon-counting calibrations

From NIST-PML — Precise measurements of optical power enable activities from fiber-optic communications to laser manufacturing and biomedical imaging — anything requiring a reliable source of light. This situation calls for light-measuring (radiometric) standards that can operate over a wide range of power levels.

Currently, however, different methods for calibrating optical power measurements are required for different light levels. At high ...

October 30, 2015 | PFC | People News

Sylvain Ravets awarded DIM Nano-K thesis prize

Sylvain Ravets has recently been awarded the DIM Nano-K prize for his thesis “Development of tools for quantum engineering using individual atoms: optical nanofibers and controlled Rydberg interactions.” Awarded annually by C’Nano IdF (a French organization promoting nanoscience research), the prize recognizes him for “research at the interface between nanosciences and cold atoms.” The DIM Nano-K gathers IFRAF (Île-de-France Cold ...

September 29, 2015 | PFC | Research News

At the edge of a quantum gas

From NIST-PML--JQI scientists have achieved a major milestone in simulating the dynamics of condensed-matter systems – such as the behavior of charged particles in semiconductors and other materials – through manipulation of carefully controlled quantum-mechanical models.

Going beyond their pioneering experiments in 2009 (the creation of “artificial magnetism”), the team has created a model system in which electrically neutral ...

September 23, 2015 | Research News

Twisting Neutrons

 It’s easy to contemplate the wave nature of light in common experience.  White light passing through a prism spreads out into constituent colors; it diffracts from atmospheric moisture into a rainbow; light passing across a sharp edge or a diffraction grating creates an interference pattern.  It’s harder to fathom the wave behavior of things usually thought of as particles, such ...