RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon


July 12, 2017 | PFC | Research News

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.

July 10, 2017 | Podcast

Labs IRL: Boxing up atomic ions

What makes a university physics lab tick? Sean Kelley grabs a mic and heads to a lab that's trying to build an early quantum computer out of atomic ions. Marko Cetina and Kai Hudek, two research scientsts at the University of Maryland who run the lab, explain what it takes to keep things from burning down and muse about the future of quantum computers.

This is the first installment of Labs in Real Life—Labs IRL, for short—a recurring segment on Relatively Certain that will explore what it's actually like to work in a university lab. (The work in this lab is supported by the Intelligence Advanced Research Projects Activity (IARPA) LogiQ Program through the U.S. Army Research Office.)

This episode of Relatively Certain was produced by Sean Kelley, Emily Edwards and Chris Cesare. It features music by Dave Depper, dustmotes and Podington Bear. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.

July 7, 2017 | People News

JQI student awarded NSF Graduate Research Fellowship

In Spring 2017, Jonathan Francisco San Miguel was awarded a National Science Foundation (NSF) Graduate Research Fellowship. This prestigious NSF fellowship recognizes outstanding students in science, technology, engineering and mathematics fields. Since 2014, he has been working on superconducting qubits in JQI Fellow Vladimir Manucharyan's condensed matter physics laboratory.

San Miguel's interest in physics started before coming to college. Later at ...

June 23, 2017 | Research News

Tiny magnetic tremors unlock exotic superconductivity

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one ...

June 23, 2017 | Research News

Quantum Thermometer or Optical Refrigerator?

From NIST News

In an arranged marriage of optics and mechanics, JQI-NIST physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, yet exploiting some of the deepest principles of quantum physics, these optomechanical systems can act as inherently accurate thermometers, or conversely, as a type ...

June 12, 2017 | PFC | Research News

Neural networks take on quantum entanglement

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.

Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, ...

May 18, 2017 | Podcast

The limits of computation

Modern computers, which dwarf their forebears in speed and efficiency, still can't conquer some of the hardest computational problems. Making them even faster probably won't change that.

Computer scientists working in the field of computational complexity theory explore the ultimate limits of computers, cataloguing and classifying a universe of computational problems. For decades, they’ve been stuck on a particular nagging question, which boils down to this: What’s the relationship between solving a problem and checking your work?

Chris Cesare teams up with Emily Edwards and QuICS postdoctoral researcher Bill Fefferman to explain what this question entails and how researchers are tackling it with tools from physics.

This episode of Relatively Certain was produced and edited by Chris Cesare, with contributions from Emily Edwards, Sean Kelley and Kate Delossantos. It features music by Dave Depper, Podington Bear, Kevin MacLeod and Little Glass Men. Relatively Certain is a production of the Joint Quantum Institute, a research partnership between the University of Maryland and the National Institute of Standards and Technology, and you can find it on iTunes, Google Play or Soundcloud.

May 9, 2017 | Research News

Tiny tug unleashes cryogenic currents

Researchers have found that a small stretch is enough to unleash the exotic electrical properties of a newly discovered topological insulator, unshackling a behavior previously locked away at cryogenic temperatures.

The compound, called samarium hexaboride, has been studied for decades. But recently it has enjoyed a surge of renewed interest as scientists first predicted and then discovered that it ...

April 17, 2017 | People News

Recent JQI grad receives APS policy fellowship

Lauren Aycock, a recent JQI graduate researcher, has been awarded a Congressional Science Fellowship from the American Physical Society.

The fellowship, which lasts for one year, aims to provide members of Congress with the scientific and technical expertise of trained scientists. In turn, fellows like Aycock get to learn first-hand about public policy and communicate with Congress on behalf ...

April 13, 2017 | PFC | Research News

Trapped ions and superconductors face off in quantum benchmark

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from ...

April 10, 2017 | PFC | People News

JQI undergraduate researcher Eliot Fenton receives Goldwater Scholarship

Three University of Maryland students have been awarded scholarships by the Barry M. Goldwater Scholarship and Excellence in Education Foundation, which encourages students to pursue advanced study and careers in the sciences, engineering and mathematics. The Goldwater Foundation also recognized a fourth UMD student with an Honorable Mention.

Eliot Fenton, along with Christopher Bambic and Prayaag Venkat were among the 240 ...


Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to