RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Keldysh-ETH quantum computation algorithm

October 11, 2017 - 11:00am
Speaker: 
Jim Freericks
Institution: 
Georgetown University

We develop an efficient and fast quantum computational scheme to determine the equilibrium Green's functions at finite temperature without requiring any adiabatic state preparation steps. The approach works for generic models that obey the eigenstate thermalization hypothesis and one can show the short-time behavior of the Green's functions is produced exactly by this method. We also describe cooling schemes that could be invoked to reach lower temperatures than what can be reached by simple interaction-strength ramping. The approach requires one qbit per orbital degree of freedom plus one additional global ancilla qbit. Cooling requires additional ancilla qbits, with more qbits providing additional cooling power. We end with a discussion on how this algorithm can be implemented now on currently available quantum computers like the IBM 5 qbit machine.

PSC 3150

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu