RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Multi-Species Trapped-Ion Node for Quantum Networking

September 1, 2017 - 4:10pm
Clay Crocker

Trapped atomic ions are a leading platform for quantum information networks, with long-lived identical qubit memories that can be locally entangled through their Coulomb interaction and remotely entangled through photonic channels. However, performing both local and remote operations in a single node of a quantum network requires extreme isolation between spectator qubit memories and qubits associated with the photonic interface. We achieve this isolation by cotrapping 171Yb+ and 138Ba+ qubits. We further demonstrate the ingredients of a scalable ion trap network node with two distinct experiments that consist of entangling the mixed species qubit pair through their collective motion and entangling a 138Ba+ qubit with an emitted visible photon.

*We plan to have drinks and snacks at 4:00 with the talk beginning at 4:15*

PSC 2136
College park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to