RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

The Physics of Hearing: From Basic Physical Principles to Bionic Auditory Prostheses

September 13, 2016 - 4:00pm
Speaker: 
Matt Goupell
Institution: 
UMD

Understanding the transformation of acoustical sound energy as it travels from a sound source to the ear to the brain requires a strong grounding in physical principles: from the between-the-ear differences used to help determine sound location, to the unique resonance properties of the inner ear that performs a frequency analysis of sound, to our present ability of the bypassing of typical electrochemical transduction of sound using a bionic auditory prosthesis. In this talk,we will discuss how sound is typically processed by the auditory system, as well as how physical acoustical sound properties correlate to sound perception. Then we will discuss how the typical transduction of sound can be bypassed for people who are deaf and require a bionic auditory prosthesis to hear and understand speech. While people with auditory prostheses can understand speech at high levels, substantial changes to the signals occur, which impacts many perceptions. Finally, we will discuss future technological directions for these devices and how they might better convey sound to the users’ auditory system.

PSC Lobby

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu