RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Enabling fault tolerance with GST

March 9, 2016 - 2:00pm
Kenneth Rudinger
Sandia National Laboratory

The most powerful existing threshold theorems for fault tolerant quantum computing require one- and two-qubit gates that are within 1e-3 to 1e-4 (in diamond norm distance) of ideal. Certifying that an experimental qubit system achieves this threshold thus requires (1) characterizing the full process matrices of its gates, and (2), assigning reliable uncertainty regions. These requirements must be met for both one- and two-qubit gates, with errors that are small in the diamond norm distance. We demonstrate how to achieve all these desiderata using gate set tomography (GST). GST provides a full characterization (including diamond norm) that randomized benchmarking cannot, while avoiding process tomography's reliance on pre-calibrated operations. We show how to put very tight (<1e-4) error bars on any single-qubit gate diamond norm using GST, by incorporating data from long periodic circuits (gate sequences) akin to those that provide Heisenberg scaling in phase estimation. We also extend GST to two-qubit gates, by formalizing several aspects of GST to enable extensive optimizations, and discuss the tricks required to analyze two-qubit data. We benchmark two-qubit GST using simulated and trapped-ion data, achieving similarly tight (<1e-4) error bars on the diamond norm.

3100A Computer and Space Sciences
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to