RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Landau Theory of Helical Fermi Liquids

January 7, 2016 - 1:00pm
Speaker: 
Rex Lundgren
Institution: 
University of Texas

We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.

2115 Computer and Space Sciences
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu