RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Quantum critical glasses and many-body delocalization

December 1, 2015 - 11:00am
Siddharth Parameswaran
UC, Irvine

Isolated systems that evade thermalization exhibit behavior more commonly associated with quantum ground states: for instance, fully many-body localized (MBL) systems show area law entanglement in every eigenstate and robust ordering phenomena. First, I will apply real-space renormalization group ideas to study a class of "quantum critical glasses" in which (nearly) every eigenstate exhibits logarithmic entanglement scaling conventionally associated with one dimensional critical ground states. Such "infinite randomness" phases are believed to describe critical points between distinct MBL phases, or stable critical phases of anyonic spin chains [1]. I will also point out an example where an infinite randomness fixed point of a non-interacting theory is disrupted by interactions that break either ergodicity or symmetry, preventing the stabilization of certain types of symmetry-protected topological order by localization [2]. Finally, I will discuss a simple microscopic model and its associated scaling theory for the transition out of the MBL phase, where ergodicity is restored sharply at an unusual critical point [3].


[1] Phys. Rev. Lett. 114, 217201 (2015).

[2] arXiv:1510.04282 (2015).

[3] Phys. Rev. X. 5, 031033 (2015).

Based on joint work with R. Vasseur, A.C. Potter and A.J. Friedman.

2205 Toll Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to