RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Nonlinear optics in cold, bunched atoms

July 1, 2015 - 10:30am
Bonnie Schmittberger
Duke University

In the fields of nonlinear optics and quantum information science, there exists a broad interest in learning ways to enhance the nonlinear optical response of atoms to optical fields. Many systems implement optical cavities or employ electromagnetically induced transparency to enhance the light-atom interaction strength. We present an alternative method and show that the nonlinear susceptibility can be enhanced even for two-level atoms in free space by cooling them to sub-Doppler temperatures and allowing them to spatially bunch in an optical lattice. We show theoretically that the nonlinearity that arises due to atomic bunching gives rise to more than two orders of magnitude enhancement in the third-order nonlinear optical susceptibility over the case of a homogeneous gas. With this enhanced material response, we experimentally observe ultra-low powers required for the nonlinear optical phenomenon of optical pattern formation. We also discuss the synergistic interplay between the optical patterns and the spatial distribution of the atoms.

2136 PSC
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to