RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Symmetry, Anisotropy and Dimensionality: Spin physics in the elemental semiconductors Si, Ge, and P

April 7, 2015 - 4:00pm
Ian Appelbaum
University of Maryland

 By the 1980s, an accumulation of decades of research on charge transport in the elemental semiconductors silicon and germanium led to a lingering perception that there was nothing left for condensed matter physics to do with them. However, just before arriving at UMD almost 7 years ago, my lab demonstrated that these "old dogs" could be taught a few more "new tricks": Basic research on charge dynamics in these electronic materials eventually led to scores of real-life device applications, but spin dynamics remained unexplored.  We figured out how to overcome several experimental challenges to inject spin-polarized electrons into these otherwise-nonmagnetic materials, and detect their remaining non-equilibrium spin orientation after traveling over amazingly long distances. In this talk, I will describe some of our many recent breakthroughs enabled by unique experimental capabilities and thorough theoretical understanding of both intrinsic and extrinsic phenomena dominating spin transport in Si and Ge. Furthermore, these two examples are not the end of the story, as new research moves forward into the spin physics of 2D elemental semiconductors like single-layer black phosphorus, or 'phosphorene'.

PSC Lobby
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to