RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Realizing SU(N) magnets in thermal alkaline-earth gases

October 30, 2013 -
11:00am to 12:00pm
Michael Beverland


We will show that thermal fermionic alkaline-earth atoms in flat-bottom traps allow one to implement a spin model displaying two symmetries: the symmetry that swaps atoms occupying different vibrational levels of the trap and the SU(N) symmetry associated with N nuclear spin states. The high symmetry allows us to analytically calculate the full spectrum, the eigenstates, and the dynamics. Armed with such a solid understanding, we show how this system can be used to generate entangled states usable for Heisenberg limited metrology (e.g. clocks), to make measurements useful for quantum information processing, and to understand spin diffusion in SU(N) systems. The best news is that this highly symmetric spin model should be readily realizable even when the vibrational levels are occupied according to a high-temperature thermal or a non-thermal distribution. 

CSS 2115
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to