RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Pushing measurements to their limits and beyond: A quantum receiver that beats the standard quantum limit

April 29, 2013 - 12:30pm
Speaker: 
Francisco Elohim Becerra-Chavez
Institution: 
Joint Quantum Institute

Measurement is at the heart of quantum mechanics, and quantum mechanics sets limits on how well we can measure the state of a physical system. For example, nonorthogonal states, such as coherent states, cannot be perfectly distinguished by any deterministic measurement due to their intrinsic overlap. The minimum error in discriminating nonorthogonal states using an ideal conventional measurement of the physical property that differentiates these states, such as a heterodyne measurement, is given by the standard quantum limit (SQL). This limit bounds the ultimate performance of existing coherent communications and many coherent-state-based quantum information protocols as well. But there are ways of measuring coherent states that can beat this limit and achieve even lower errors. Such schemes have been sought for many years, with results providing only marginal improvements beyond the standard quantum limit. Moving into a new regime, we have implemented a quantum receiver that discriminates four nonorthogonal coherent states with error probabilities below the SQL for a wide range of input powers, and that reaches error probabilities 6 dB below the SQL.

1201 Physics Building
College Park, MD 20742

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu