RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

More News

Quantum point contact
September 18, 2014 | Research News

Two-dimensional electron liquids

A relatively new frontier for studying 2D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Before he left Stanford University, new JQI Fellow and UMD Professor James Williams and his colleagues performed tests on a thin sample of strontium titanate (STO) covered over with an electrolyte gel, a material in which negative and positive ions dissociate (saltwater is a common electrolyte: Na+ and Cl- ions come apart in a water solution). Their results appear in the journal Nature Physics.

September 2, 2014 | Research News

Cool Calculations for Cold Atoms

Two scientists at the Joint Quantum Institute have formulated a universal theory to describe the properties of Efimov states, a theory that, for the first time, does not need extra adjustable unknown parameters . This should allow physicists to predict the rates of chemical processes involving three atoms -- or even more -- using only a knowledge of the interaction forces at work.

August 21, 2014 | Research News

On-chip Topological Light

JQI researchers led by Mohammad Hafezi report detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light on a photonic chip.

July 31, 2014 | PFC | Research News

Spin Diagnostics

Recently physicists led JQI Fellow Christopher Monroe have executed an MRI-like diagnostic on a crystal of interacting quantum spins. They predict that their method is scalable and may be useful for validating experiments with much larger ensembles of interacting spins.

July 17, 2014 | Research News

Highly-Charged Ions

A new theoretical study conducted by JQI adjunct fellow Marianna Safronova and her colleagues from groups around the world provides the best yet study of how highly charged ions could be used for atomic timekeeping and for processing quantum information.

July 2, 2014 | Research News

Superconducting-Silicon Qubits

Theorists propose a way to make superconducting quantum devices such as Josephson junctions and qubits, atom-by-atom, inside a silicon crystal.

May 27, 2014 | Research News

Advanced Light

Michael Lewis’s bestselling book Flash Boys describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don’t need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streaming, we want things fast.

May 23, 2014 | People News

Frontiers of Cold Matter

JQI fellow Paul Julienne has recently retired from NIST but continues to perform high-level theoretical research in the subject he helped to create---ultracold matter.  In honor of his birthday, a meeting called Frontiers of Cold Matter is being held May 29-30 at JQI.

May 5, 2014 | Research News

Stimulated Mutual Annihilation

JQI physicists report detailed calculations of the dynamics of a positronium BEC. This work is the first to account for effects of collisions between different positronium species. These collisions put important constraints on gamma-ray laser operation.

April 16, 2014 | People News

JQI Fellow Gretchen Campbell among PECASE awardees

Release from NIST Tech Beat, April 15, 2014

Three National Institute of Standards and Technology (NIST) researchers were among those honored April 14, 2014, at a White House reception as winners of Presidential Early Career Awards. The award is the highest honor bestowed by the United States government on science and engineering professionals in the early stages of their independent research careers.

March 19, 2014 | Research News

Cold Chaos

At sub-micro-kelvin temperatures atoms or molecules move so slowly that it is better to think of them as spread-out, wavelike things a micron or more across, many times larger than any putative bond length (typically sub-nanometer in size) that would characterize bound molecules. A new experiment conducted at the University of Innsbruck in Austria adds a new twist to this picture.

March 6, 2014 | Research News

Up-Converted Radio

Ever worry about losing your mobile-phone reception? The problem is a weak microwave signal. A new approach to this important problem provides a clean, all-optical detection of microwaves and radiowaves featuring noise mitigation a thousand times better than existing methods.

February 25, 2014 | PFC | Research News

How do you build a large-scale quantum computer?

Physicists led by ion-trapper Christopher Monroe at the JQI have proposed a modular quantum computer architecture that promises scalability to much larger numbers of qubits. The components of this architecture have individually been tested and are available, making it a promising approach. In the paper, the authors present expected performance and scaling calculations, demonstrating that their architecture is not only viable, but in some ways, preferable when compared to related schemes.

People News

Outreach

PFC and JQI researchers engage the public in quantum research. Click here to request a visit from one of our scientists!

Twitter Updates

People Profiles

  • James R. Williams

    James R. Williams is the newest JQI fellow, having arrived in March 2014. He is an assistant professor of physics at the University of Maryland, and his chief area of research is experimental condensed matter physics. Specifically, he specializes in understanding why certain one and two-dimensional materials (e.g. topological insulators, graphene) depart from normal conductivity provided by free electrons.

    Jimmy, as he likes to be called, almost didn’t go to college. All he wanted to do was work on cars. His mother forced him to apply to one college, so he choose Santa Clara University where he previously attended a basketball camp. He majored in engineering, but his favorite courses involved physics, so he changed direction again. This is how he arrived at his chosen area of research.

    Eventually he got a PhD from Harvard University in 2009 on the subject of grapheme, while studying under Charles M. Marcus. He was then a postdoctoral fellow at Stanford before coming to Maryland.

  • Mohammad Hafezi

    Hafezi is JQI fellow and works at the interface of condensed matter theory and quantum optics. The focus of his research is on theoretical and experimental investigations of artificial gauge fields and topological order in photonics systems. Such systems can be exploited as robust optical devices insensitive to disorder, which is the subject of his NSF Physics Frontier Center’s seed funding program. Moreover, in the presence of strong optical nonlinearity, such systems are expected to exhibit fractional quantum Hall physics, providing a platform for potentially observing anoynic statistics. He received his Ph.D. from Harvard in 2009 where he worked with Mikhail Lukin and Eugene Demler. There, he studied strongly correlated physics in AMO systems. In particular, he worked on the topological characterization of ultracold atoms in 2D and also non-equilibrium dynamics of strongly interacting photons in 1D.

  • Phil Richerme

    Phil Richerme is a postdoc in Chris Monroe's Trapped Ion Quantum Information Group. He studies quantum magnetism using a well-controlled and well-isolated system of atomic ion spins, realizing Feynman's original proposal for a quantum simulator. These experiments probe the ground state and dynamical evolution of interacting spin systems, which are difficult (or impossible) for classical computers to calculate for even a few dozen spins. Phil received his Ph.D. from Harvard in 2012, working with Gerald Gabrielse and the ATRAP collaboration at CERN to trap antihydrogen atoms for sensitive tests of CPT symmetry.

  • Alexey V. Gorshkov

    Alexey Gorshkov is a JQI fellow and theoretical physicist at NIST. He grew up in Moscow until his parents brought him to Boston when he was in 10th grade. In high school, he was good at math, so that's what he was planning to do in college, but then math ended up being too dry. Physics offered a perfect alternative since it involved lots of interesting mathematics and grappled with problems related to real life.

    He attended Harvard for his undergraduate and graduate degrees, obtaining a physics PhD in 2010 studying under Mikhail Lukin. After that he was a postdoctoral fellow at Caltech, working with John Preskill. He won numerous university teaching and research awards during these years.

    His research is at the intersection of AMO physics, condensed matter physics, and quantum information science. He has authored dozens of papers and has a patent entitled: “Scalable Room Temperature Quantum Information Processor.”

  • Crystal Senko

    Crystal Senko is a graduate student in Chris Monroe's ion trapping group. While in the group she has focused on ultrafast spin manipulation as well as quantum simulation of magnetism. Senko is an undergraduate alumni of Duke University, where she worked with Dan Gauthier on magneto-optical trapping using distributed feedback lasers.

  • Michael Foss-Feig

    Michael Foss-Feig is a JQI postdoctoral scientist. As an undergraduate at Amherst College, Michael performed some experimental work in solid-state physics with professor Jonathan Friedman. But, when it came time to write a dissertation, he decided he wanted to try working on theoretical problems instead. Later he went to the University of Colorado where he received a physics PhD in October 2012. His thesis, prepared under the supervision of Ana Maria Rey, was entitled “Quantum simulation of many-body physics with neutral atoms, molecules and ions.” This work earned him the DAMOP Thesis Prize in June 2013.

    Now a NRC postdoctoral fellow at NIST working under Charles Clark, Michael’s interests are centered around many-body physics with ultracold atomic, molecular, and optical systems. He also studies long-range interacting systems, such as trapped ions, ultracold dipolar molecules, and Rydberg atoms. What does he do outside working hours? “Mostly rock climbing, cooking, and auto repair---the last two out of defiance since, as a theorist, nobody thinks I should be able to do anything useful.”

Subscribe to A Quantum Bit 

Quantum physics began with revolutionary discoveries in the early twentieth century and continues to be central in today’s physics research. Learn about quantum physics, bit by bit. From definitions to the latest research, this is your portal. Subscribe to receive regular emails from the quantum world. Previous Issues...

Sign Up Now

Sign up to receive A Quantum Bit in your email!

 Have an idea for A Quantum Bit? Submit your suggestions to jqi-comm@umd.edu